

## IV Semester M.Sc. Examination, June 2017 (CBCS) MATHEMATICS

M401 T: Measure and Integration

Time: 3 Hours Max. Marks: 70

Instructions: i) Answer any five (5) full questions.

- ii) Each question carries equal marks.
- 1. a) Define a  $\sigma$  -algebra. Prove that every algebra on a set X is contained in the smallest  $\sigma$  -algebra on X.
  - b) Prove that every open set E of real numbers is the union of a countable collection of disjoint open intervals. (6+8)
- 2. a) Define outer measure m\* of a set. Prove that m\* is countable subadditive and hence deduce that a countable set has measure zero.
  - b) Construct Cantor ternary set from [0,1]. Show that Cantor ternary set is uncountable, but has measure zero. (7+7)
- 3. a) Define a measurable set. If  $\mathscr{M}$  is the set of all measurable sets then prove that  $\mathscr{M}$  is a  $\sigma$ -algebra.
  - b) Let  $\{E_i\}$  be an infinite increasing sequence of measurable sets then prove that

$$\mathbf{m} \left( \bigcup_{i=1}^{\infty} \mathsf{E}_{i} \right) = \lim_{n \to \infty} \mathsf{m}(\mathsf{E}_{n}) \tag{7+7}$$

- 4. a) Define a measurable function. Let  $\{f_n\}$  be a sequence of measurable functions with the same domain of definition E. Then prove that the functions  $\max \{f_1, f_2, ..., f_n\}$ ,  $\min \{f_1, f_2, ..., f_n\}$ ,  $\sup_n f_n$ ,  $\inf_n f_n$ ,  $\lim_n \sup_n f_n$ ,  $\lim_n \inf_n f_n$  are all measurable functions.
  - b) Prove that energy measurable function is almost a continuous function. (7+7)
- a) Define Lebesgue integral of a function in comparison with Riemann integral.
   Is every Lebesgue integrable function Riemann integrable? Justify your answer.



b) Define a simple function. Let f and g be bounded measurable functions defined on a set of finite measure. Then prove the following:

i) 
$$\int_{E} af = a \int_{E} f$$
, for all  $a \in \mathbb{R}$ .

ii) 
$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

iii) If 
$$f = g$$
 a.e. on E then  $\int_{E}^{f} = \int_{E}^{g}$ .

iv) If 
$$f \leq g$$
 a.e. on E then  $\int_E f \leq \int_E g$  and  $\left| \int_E f \right| \leq \int_E \left| f \right|$ .

v) If E<sub>1</sub> and E<sub>2</sub> are disjoint measurable sets of finite measure, then

$$\int_{E_1 \cup E_2} f = \int_{E_1} f + \int_{E_2} f.$$
 (6+8)

6. a) If f is a non-negative measurable function and  $\{E_i\}$  is a sequence of disjoint

measurable sets with 
$$\bigcup_{i=1}^{\infty} E_i = E$$
 then prove that  $\int_{E}^{fdx} fdx = \sum_{i=1}^{\infty} \int_{E_i}^{fdx} fdx$ .

- b) State and prove monotone convergence theorem. Prove that monotone convergence theorem need not hold good for a decreasing sequence of functions.
- 7. a) State and prove vital covering lemma.
  - b) Define absolute continuous function. If f(x) and g(x) are absolutely continuous functions, then prove that  $f \pm g$ , f.g, and  $\frac{f}{g}(g \neq 0)$  are absolutely continuous (8+6)
- 8. a) Establish the Holder's inequality. And deduce the Minkowski's inequality.
  - b) State and prove Riesz-Fischer throrem. (7+7)